Skip to main content
The proposed heat management technology focuses on high power applications (above 2C) that result in battery overheating, which can cause significant reduction in lifetime, performance and safety hazards.Thermal Management System (TMS) - During normal operation of batteries, the battery cells emit heat, which could cause the temperature of the battery pack to rise drastically. Without a TMS in place, heat would be trapped in the battery pack and could cause cell-degradation, leading to shortened lifetime, decreased performance and fire hazard. The proposed thermal management solution overcomes battery-overheating issue. The solution consists of liquid cooling and a proprietary material that could effectively prevent fire propagation, extend lifetime and increase performance of the battery. Working Mechanism of TMS - The TMS works by dissipating heat away from the battery cells. The proprietary thermal material is dielectric and can be poured directly into any battery pack. As the material flows into the pack, the material envelops the cells and serves as a protective layer between the cells. The material solidifies when it cools. During battery operation, the material absorbs heat emitted by the battery cells. Heat is then dissipated from the material via a liquid cooling circuit integrated in the TMS.The technology provider is actively seeking potential partnerships and technology licensing for its (i) proprietary TMS and (ii) standard battery module that consist of the TMS. The technology provider is also open to working with potential partners to fast-track their Second Generation phase change material (PCM) development.  
Lithium-ion batteries (LIBs) have been the preferred portable energy source in recent decades. The tremendous growth in the use of LIBs has resulted in a great number of spent LIBs. Disposal of these spent LIBs will cause serious environmental problems due to hazardous components such as heavy metals and electrolytes. Materials contained in the spent LIBs are valuable resources and could be recycled by proper technologies. Current methods are not suitable for LIB recycling due to slow process, low purity of the products (low profits) and the use of non-environmental friendly leaching reagents.The proposed LIB recycling technology is based on a co-precipitation process and control system which can process various types of spent LIBs including lithium cobalt oxide (LCO), lithium manganese oxide (LMO), lithium nickel manganese cobalt oxide (NMC) and lithium nickel cobalt aluminium oxide (NCA). The co-precipitation method allows the recovery of cathode metal salts in their original form, without separation of the metal elements. The obtained metal salts could then serve as the precursor for synthesis of new cathode material. In summary the process recovers the following products at more than 99% purity levels: (a) graphite and (b) cathode metal salts e.g. LiCo1/3Ni1/3Mn1/3O2, NiCO3, MnCO3, CoC2O4, and Li2CO3.The technology provider is seeking a partner who is willing to fund the prototype development and become an early adopter of the technology. Preferably, the partner should have access to spent LIB sources to support the trial.
The smart telemetry is a system for remote monitoring of the status and parameters of the battery system in electric vehicles. The system front-end comprises of Global Positioning System (GPS) and 3rd Generation/4th Generation cellular communication (3G/4G) enabled devices with built-in sensors, to provide battery stack monitoring and data-logging capabilities.  Data collected are relayed in real-time to data centre at the back-end.  The system is a plug and play setup and comes with remote system recovery function from the server.The technology is connected to the car's battery management system to collect the basic battery data through CAN bus for State-of-Charge (SoC) and State-of-Health (SoH) determination. The algorithm developed and built in on-board to determine the SoC and SoH of the battery pack, can support individual cell level. The technology will monitor and diagnose different parameters (i.e. Voltage, Temperature, SoC, SoH) of the individual battery cell in real time, and provide notifications of the failure/defective cell.
With the retirement of massive amount of end-of-life lithium ion batteries (LIBs), proper disposal of the hazardous wastes and cost-effective valorization of useful materials have become increasingly pressing and attracted extensive attention worldwide. The state-of-the-art recycling technologies, which are generally based on chemical leaching methods, have critical issues of enormous chemicals consumption, secondary pollution and tedious procedures.The technology relates to an innovative redox targeting-based process for the recycling of spent lithium iron phosphate (LiFePO4) batteries. With 0.20M of ferrocyanide [Fe(CN)6]3- solution as a selective and regenerative redox mediator, LiFePO4 is readily broken down into FePO4 and Li+ via the redox-targeting reaction. An Li-removal efficiency of 99.8% has been achieved with 50 minutes reaction at ambient conditions. The reacted redox species [Fe(CN)6]4- are instantaneously regenerated on the electrode for subsequent round of reaction while Li+ ion is separated from the counter electrode compartment as lithium hydroxide (LiOH). The technology provider is currently seeking industry partner to scale-up and commercialise the technology.
With the wide deployment of renewable energy harvesting devices, such as solar cells and wind turbines, there is an urgency to develop efficient and economical energy storage systems to stabilize the intermittent and often unpredictable primary power sources before the power can be channeled to the grid safely or utilized for on-site loads. Redox flow batteries (RFBs) are regarded as promising electrochemical energy storage devices due to their special features of separable energy and power capacity. However, redox flow batteries tend to have lower energy densities than integrated cell architectures. Here our inventions introduce the novel engineering design to and reduce bulk resistance with no significant increase in flow resistance, obtaining uniform flow throughout the battery cell and improving the overall system efficiency.

2

/

0